nswer the following questions. Calculators, Mobile Phones and Pagers are NOT allowed

Find (3 points each)

(a)
$$\frac{dy}{dt}$$
 at $t=9$ given that $y=\frac{u+2}{u-1}$, $u=(3\sqrt{t}-7)^2$

(b)
$$\frac{dy}{dx}$$
 if y is implicitly defined by $x \tan(\frac{y}{x}) - 1 = 0$.

(a) (4 points) Let
$$f(x) = \begin{cases} \cos x, & x \ge 0 \\ Ax + B, & x < 0 \end{cases}$$
. Find A and B so that f is differentiable at 0.

- (b) (3 points) Let $f(x) = \frac{x}{x+1}$. Find all x at which the tangent line to the graph of f is parallel to the line 4y x 3 = 0.
- (a) (3 points) Let f and g be functions for which f'(x) = g(x) and g'(x) = f(x) for all x, Show that $f^2(x) g^2(x)$ is a constant function.
- (b) (4 points) A ladder 13 ft long is leaning against the side of a building. If the bottom of the ladder is pulled away from the building at a rate of $\frac{1}{10}$ ft/sec how fast is the angle formed by the ladder and the ground changing at the instant when the top of the ladder is 12 ft above the ground?

Let f be a differentiable function on $(-\infty, \infty)$ with

$$f(-2) = -1$$
, $f(-1) = -2$, $f(0) = 0$, $f(1) = 2$, $f(2) = 1$, $\lim_{x \to \pm \infty} f(x) = 0$

and

Interval	(-∞, -2)	(-2,-1)	(-1,0)	(0,1)	(1,2)	(2,∞)
Sign of $f'(x)$						
Sign of $f''(x)$	ane Ch		12+ 4		-0 4 M	

Answer the following (I point each)

- (a) What are the intervals on which f is increasing, and the intervals on which f is decreasing?
- (b) What are the local extrema of f, if any?
- (c) Determine the intervals on which the graph of f is concave upward and the intervals on which the graph is concave downward.
- (d) What are the points of inflection of the graph of f, if any?
- (e) Sketch a graph of f indicating local extrema, inflection points, concavity, and asymptotes.